MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME

A FEW POINTERS?
‘ Ox3A28213A

Ox6339292C,
Ox7363632E.

[HATE YOU.

/
A\ %
Reverse Engineering I\

Instructor: Sergey Bratus
Contributions and guest lectures: John Berry, Travis Goodspeed, Ryan Speers, more TBA

Dartmouth College -- Winter 2022

What is Reverse Engineering?

Goals of the course

* Rapid immersion: real systems, real tools, real specs, lots of surprising complications
* You’'ll need to explore, search (a lot), and prioritize, not just follow the examples

* RE requires some creativity and intuition that is only developed through practice, not just
listening to lectures

* You won’t be taught everything you need to know Iin lectures. To be good at RE you have
to learn to find answers on your own. Google is your friend.

* By the end of the course you should be able to take a blob of code and figure out what it
does. (within reason)

* You will be exposed to malicious software (malware) so you will gain an understanding of
what you have seen in the news about ransomware, etc

What is Reverse Engineering?

Homework

* There will be homework after every class that is due prior to the next one

 Tuesday homework will be easier and are designed to solidify what you
learned that day

 Thursday homework will be a little more complex

 Many small assignments are better than fewer large ones. Getting better at
RE Is like learning a language. A little every day is better than a lot crammed
just before it is due.

What is Reverse Engineering?
Mid-term & Final

 The course Is project-based & all exams will be take-home
e Subject to the Dartmouth Honor Code

* You will be given some software that you will RE and write up what it does
* Probably some other small tasks

* |f you want to go above and beyond the coursework, individual research
projects and Senior Honors Theses will be encouraged

* Improving state-of-the-art RE tools such as Ghidra and Binary Ninja is
strongly encouraged

What is Reverse Engineering?
And why do we do it?

* Engineers work from a Design to an Artifact
* Reverse Engineers work backward, from an Artifact back to a Design
* |In computing, this is often working from an Executable back to Source Code
* This Is useful for many reasons:
 We can preserve and sustain old software by emulating it
* We can find security bugs without source code

* We can copy software, or determine whether one program copies another

What is Reverse Engineering?

And is it legal? - butwewill

We didn’t talk about this in class,

* This isn’t a course in law, nor are any of us law experts. Seek your own legal advice.
* There are many legal uses for Reverse Engineering, but also there are potential violations of law or contracts.

* The Electronic Frontier Foundation (EFF) has a helpful guide for reference at https://www.eff.org/issues/coders/
reverse-engineering-faq

* “Five areas of United States law are particularly relevant for computer scientists engaging in reverse engineering:
* Copyright law and fair use, codified at 17 U.S.C. 107;

 Trade secret law;

* The anti-circumvention provisions of the Digital Millennium Copyright Act (DMCA), codified at 17 U.S.C. section 1201;

* Contract law, if use of the software is subject to an End User License Agreement (EULA), Terms of Service notice
(TOS), Terms of Use notice (TOU), Non-Disclosure Agreement (NDA), developer agreement or APl agreement; and

* The Electronic Communications Privacy Act, codified at 18 U.S.C. 2510 et. seq.” (-EFF)

https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq

What is Reverse Engineering?

And how is it done?

 Source Code is compiled and linked into Machine Code.
 Machine Code looks like this:
« E8 FO CA AD DE
 Machine Code translates directly to Assembly Code, like this:
 CALL OXDEADCAFE
At alow level, we're just reading disassembly and annotating it to be legible

* At a high level, we're also trying to understand the program design

What is Reverse Engineering?

And how is it done?

* You can learn to read Disassembly, but there are complications:
e |t is very verbose, much more so than C
|t often lacks variable and function names
* Jools can help!
 Decompiling the Disassembly into C, or something like C
* Accepting new variable and function names

* [ransferring symbol names between different programs

What is Reverse Engineering?

And what tools make it easier?

« IDA Pro We will use Ghidra extensively.
» First popular Interactive Disassembler Your final project or Honors Thesis
could be a Ghidra plugin or another
» First commercially useful Decompiler Ghidra improvement
 Ghidra

* NSA's internal tool for reverse engineering, now with a declassified & free version
* Binary Ninja

 Commercial disassembler with clean scripting

4“1 -

File Edit Jump Search Yiew Debugger Options: Windows Help
| EH ey~ g @ S |3 | @ @ | ckah @ F~deh X|| P @D O |Nodebugger ;\f--:‘i:@ﬂ@?"a’-
SR e | =
Library funchion Data BN Regular function Unexplored | Instruction E =ternal sumbaol
E Functions window O & X D& Wiewd [I |E| Hex Wiew-1 | @ Structures | Ij Enums | FE] Imports | @ Exparts I
Funchon narme 1= _tBHt:ﬂBﬂﬂﬂﬂﬂ1ﬂﬂﬂﬂ2CE? |
E start e | text:00000001808002CE7 ; Aattributez: bp-bazed frame o
E sub_ 100002309 | text:800800800188882CE7
| | text:00000080100002CE7 =ub 108882CE7 proc near ; CODE XREF: sub 188814AD74+43FClp
7] sub_100002600 | text:0000000100082CE7 push rbp
] sub_100002634 | text:00000001000D2CES moy rbp, rsp
7 sub_100002698 | text:0000000100802CEB 114 eax, eax
M |[F] sub_1000026E5 | text:00000008180802CED test rdi, rdi
(7] sub_100002769 | text:0000000100002CF0 jnz short loc_ 188802CF7
{17 sub_100002918 _text:0000000100002CF2 jmp short loc_1088002D8E
text 8000000180082 CF @
% zEE Egggii text:0000000100802CF4 |
| text:0000000100002CF4 loc_ 188082CF4: : CODE XREF: sub_188882CE7+16}]
F] sub_1000024D6 | text:0000000100002CF4 ; sub_108802CE7+22]]
F sub_1000024EC | text:PB0ABAB100082CF4 inc rdi
z' sub_100002B27 | _text:888008088188882CF7
E sub_100002C4C | text:00000001080002CF7 loc 180882CF7: ; CODE XBEF: sub 188882CE7+9Tj
z sub_100002C95 | text:80000800188882CF7 moyzx eax, byte ptr [rdi]
| text:00080000188882CF4 cmp gax. 9
zEE 1333353';; " text:8000880100882CFD jz X JOK About
‘ | _text:000000018080802CFF test a
7] sub_100002DFE text:0000000160002D01 jz s
F] sub_100002E24 | text:0000000100002D03 movzx e -
7| sub_100002ECT "~ text:0000800100062D06 cnp L |0 - The Interactive Disassembler
z' sub_100002F50 | text:B0080000188882DA89 jz 3
E sub_100002FC8 | text:B8880000188882DA8B movy r Wersion 6.8.15041 3 (64-bit)
z' sub 100003155 | text:0000000100002DBE loc 188882DBE: (2] 2015 HesRaus SA
=] sub_ 100003140 | text:00000001000802DBE movzx @ & SR Al
| text:B8080808080188882D11 cmp e
F] sub 100003184 | text:P0A0BAG180BA2D14 jz S
f | sub 100003200 | text:00000001000082D16 movzx e
| sub_100003287 | text:B0080000188882D19 cmp e
E sub_100003341 | text:B80808080808188882D1C jnz s
E sub_ 100003364 | text:88808080808188882D1E : g, e T3S, oM
: - | text:88080808080818808082D1E loc 188882D1E:
jﬂ SL‘M?DDD%BF Ll_l text:00080081080802D1E movzx e
Line 16 of 1748 _UDDDECE?|nnnnonnlnDDDZCE7: sub_100002CE7 | (Synchronized w ‘ Ok I &ddans... | -

E Clutput windo

]The initial autoanalysis has been finished.

Fythion I

AU: idle |[Dowm

Disk:

4Z24zE

The Basics of Reverse Engineering

What it's like inside a C program.

alr%s cat pointers.c
#include <stdio.h>

#include <stdint.h>
#include <stdlib.h>

int main(int argc, char sxxargv){
void xheapthing=malloc(512);
printf("Main is at 0x%0811x.\n", (uint64_t) main);
printf("The call stack is near 0x%0811x.\n",
(uint64_t) &argc);
printf("The heap is near 0x%0811x.\n",

(uint64_t) heapthing); Run this program several times.
If you see different addresses between runs,
b _ _ you are seeing the effects of ASLR.
alr%s ./polnters
Main 1s at 0x100003ed4. Note which part of each address doesn’t
The call stack 1s near @xl6fdff/ec. change: that’s because ASLR is at page
The heap 1S near 0x100304310. granularity (typlcally 4Kbytes)

alrs

00101169 - main

bndefined main()

The Basics of Reverse ——

- - undefined4 Stack[-0x1c]:4 local_lc
En Inee rl n undefined8 Stack[-0x28]:8 local_28
g g malin
...1169 END

Wh d D- bl I k I-k 9 ...116d PUSH REP

at does Disassembly 100K like 116e MOV REP,RSP

...1171 SUB RSP,0x20

...1175 MOV dword ptr [RBP + local_ilc]...
...1178 MOV qword ptr [REP + local_28]...
...117¢c MOV EDI,0x200

...1181 CALL <EXTERNAL>::malloc

...1186 MOV qword ptr [REP + local_10]...
...118a LEA RAX, [main]

..1191 MOV RSI=>main,RAX

...1194 LEA RDI,[s_Main_is_at_ 0x%0811x...
...119b MOV EAX,0x0

...1120 CALL <EXTERNAL>::printf

...11a5 LEA RAX=>local_1c, [RBP + -0x14]
...11a9 MOV RSI,RAX

...1lac LEA RDI,[s_The_call_stack_is_n...
...11b3 MOV EAX,0x0

...11b8 CALL <EXTERNAL>::printf

...11bd MOV RAX,qword ptr [RBP + local...
: : ..11c1 MOV RSI,RAX

Note Intel syntax of this disassembler .11¢4 LEA RDI, [s_The_heap_is_near 0x...
...11cb MOV EAX,0x0

...11d@ CALL <EXTERNAL>::printf

...11d5 MOV EAX,0x0

...11da LEAVE

...11db RET

The Basics of Reverse Engineering
What does Decompiled C look like?

Decompile: main - (pointers)
1
* Denser than Assembly 2 |bndefined8 main(undefined4 param_1)
- 3
» Some reasons it is 1 |{
difficult to read: 5 | undefined4 local_lc [3];
3 vold xlocal 10;
e Missing variables ! W .
8 ocal 1c = param_1;
names. 9 local 10 = malloc(0x200);
. Potential ., |10 | printf("Main is at Ox%081l1x.\n",main);
otential Inaccuracies. |, printf("The call stack is near 0x%0811x.\n",local_1c);
o 12 | printf("The heap is near 0x%0811lx.\n",local_10);
« Missing arguments. 13| return 0;
14 |}
15

A Quick Intro to Assembly Languages

* There are many of these languages, and they are different.

* This course focuses on x86 and will dabble in ARM.
 ARM has three major dialects: ARM32, Thumb2, and ARMo64
* X86 has two major dialects: x86 and x86_64/amd64.

* You will be writing a little assembly, but reading a lot of it.

A Quick Intro to Assembly Languages

Hexadecimal 3Svu Evans

ebork hexadecimal

hexadecimal is 0x means it's hex powers of 2 are easier
base 16 the ASCIL code tfo recognize in hex
for space is 0x20

that starts with
0x, so it means
32 and not 20!

2*° in decimal: 1048576

2
1$ thal™ a power of
2?7 who knows

2"% in hex: 0x1 eefeee

more obvious|5 o power of 2

0~0 44 8-8 c->12
1~] 55 9->9 d->13
22 66 a-»10 e=->14

3~3 77 b=11 f=15
N

Va
base 1b base |10

a 2-digit hex case doesn't matter things hexadecimal
number is between is veed for
0 and 255
BATT SN0 Prese al —» color codes! (eg 0xFFOOFF)
0x0 i 9 one b%'\'e Oxff23ab ¢+—— MmMean the _.’memorg addrcsscs!
Ox10 = 16 . 4
(18 petTween / same *hins
0x23 = 35 . OxFf23aB -+ displaying binary data!
oxff = 255 | 00 25 (like with hexdump)

A Quick Intro to Assembly Languages

Registers

* Registers are like small variables that exist in hardware

See suggested reading list,

 On x86_64 there are a lot of them but here are the most common ltem [1]

 RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, R8-R15, and RIP
 These are all 64 bits in length.

* RIP (Instruction Pointer) is a special register that points to the next instruction to be executed. It is also
commonly referred to as the Program Counter (PC)

* Floating point registers (3.14169)
* Flag Register (Zero, Signed, Carry, etc)
 Segment Registers (for memory stuff)

e AVX/SSE - xmm/ymm/zmm - 128/256/512 bits

A Quick Intro to Assembly Languages

Registers

* You can access subsets of the bits for many of them:

« RAX (all 64 bits) -> EAX (lower 32 bits) -> AX (lower 16 bits) -> AH (upper 8
bits of AX) -> AL (lower 8 bits of AX)

aX

eax

A Quick Intro to Assembly Languages
ADD RAX, RCX

 Each line Is one Instruction.
 Each line begins with an Operation. In English grammar, a Verb.
 Parameters are typically called operands
48 01 c8 is the machine code. ADD is often called the instruction mnemonic
* The first parameter is the Destination, storing the result.
* |nstructions are grouped into Functions.
* A function begins with the parameters on the Stack or in Registers.

* A function ends with a standard instruction. (RET or BX LR.)

A Quick Intro to Assembly Languages
ADD RAX, RCX

e This instruction is x86 64:

* This specific syntax view of the instruction is called (Intel). There are other
ways to represent it, such as Gas/AT&T syntax used by GNU tools (GCC)

* Destination register comes first (with AT&T, it’s the opposite! Why, oh why?)
 The second register is one of the inputs.
 [The operation is ADDition.

e So what does this do?

A Quick Intro to Assembly Languages

Common Operations

* Operations are unique to each assembly language, but some are common.
MOV, ADD, SUB, MUL -- Arithmetic
« CALL, BL -- Function Calls
e RET, BLR -- Function Returns
» PUSH, POP -- Grow or shrink the Stack.
* A table can be handy for each new assembly language.

| earn the common instructions, look up the rest.

A Quick Intro to Assembly Languages
Stack

* You are probably familiar with the stack data type: Last in First Out (LIFO)
* As opposed to Queue: First in First out (FIFO)
 The stack “grows down” from higher addresses to lower addresses
 Used to store local variables that were “statically allocated” at compile time

* \We say statically allocated because the size doesn’t change when the
program runs

 On x86_64 the stack is pointed to by RSP. It is an implicit operand in many
Instructions.

A Quick Intro to Assembly Languages
PUSH

* Used to store data on the stack
 PUSH RAX
» Effectively

« SUB RSP, 8

MOV [RSP], RAX

* (" Note that “| |” denotes a dereference. Like var|8] = ## in C %)

A Quick Intro to Assembly Languages
POP

 Used to take data from the stack and store it
« POP RAX
» Effectively

MOV RAX, [RSP]

 ADD RSP, 8

A Quick Intro to Assembly Languages
PUSH/POP - Example

RSP OXFFFO—

» RSP := OxFFFO
e RAX := Oxdeadbeef
e RCX := 0xd00dd0O0Od

A Quick Intro to Assembly Languages
PUSH/POP - Example

Oxdeadbeef

—_____.—‘
RSP OxFFDS8

« PUSH RAX

A Quick Intro to Assembly Languages
PUSH/POP - Example

Oxdeadbeef
0xd00dd00d

RSP OxFFDO

« PUSH RCX

A Quick Intro to Assembly Languages
PUSH/POP - Example

Oxdeadbeef
RSP OXFFD8 ™~ 0xd00dd00d

» POP RAX

A Quick Intro to Assembly Languages
PUSH/POP - Example

RSPOXFFFO | Oxdeadbeef |
XFFFO 0xd00dd00d

« POP RCX

A Quick Intro to Assembly Languages
PUSH/POP - Example

e RSP :=0x7?77
e RAX :=0x?7?7?
e RCX :=0x7?7?77

A Quick Intro to Assembly Languages
PUSH/POP - Example

» RSP := OxFFFO
e RAX := 0xd00dd00d
e RCX := Oxdeadbeef

A Quick Intro to Assembly Languages

Control Flow

#include <stdio.h> * A little C becomes a lot of Assembly.
LNt Ln(1nt , Ch %ok
l”ifTZigéiE) arge, char =rargv)t . gometimes it helps to think in a Graph.
printf() ;
else
printf() ;

}

A Quick Intro to Assembly Languages

o++ Function Graph - main - 4 vertices (control) NN & %

B $-Q - @ X|

Think of Control — T

FIOW as a Graph undefined AL:1 <RETURN>

undefined4 Stack[-@xc]:4 local_c
undefined8 Stack[-0x18]:8 local_18
main
...1149 END...

...114d PUSH REBP

...114e MOV REBP,RSP

...1151 SUB RSP,0x10

...1155 MOV dword ptr [RBP + local_c],...
...1158 MOV qword ptr [RBP + local_18]...
...115¢ C(MP dword ptr [REP + local_c],...
...1160 JLE LAB_ 00101170

ooto1162 ¥~ 0
| --.1162 LEA RDI, [s_That's_too_many!_00...
...1169 CALL <EXTERNAL>::puts

...116e JMP LAB_0010117c

ﬂm- LAB_00101170 g ~ [.‘LIl

3 LAB_00101170
...1170 LEA RDI,[s_That's_alright._001...
...1177 CALL <EXTERNAL>::puts

Y
mouh N =~ O a]

LAB_0010117c
...117¢c MOV EAX,0x0 >
...1181 LEAVE
...1182 RET

A Quick Intro to Assembly Languages
CMP RAX, RCX

You can think of CMP as a signed subtraction
» Signed uses the most significant bit (MSB) to indicate the sign. 1 == negative; 0 == positive
e Uses twos complement
e 8-bit char: OxFF =-1; Ox01 = 1
Effectively
 temp = RAX - RCX
The value of temp is used to set the fields of the flag register. For example
If temp == 0 then ZF = 1 (TRUE) else ZF = 0 (FALSE)
If temp < 0then SF =1 else SF =0

There are other flags that may or may not be set depending on the instruction

A Quick Intro to Assembly Languages
JMP & JXX

 JMP is an unconditional branching statement. It jumps where you tell it without checking any of the
condition flags.

o JXX - This is a family of instructions that jump if something is true. For example,

e JZ 0x1234 will jump to 0x1234 if the Zero Flag is set to 1. This would happen if the operands of the
last comparison were equal.

« JNZ 0x1234 is the opposite, it will jump if not zero (ZF is set to 0)

* Different jump instructions check different flags but there are some that are equivalent.

 JE is the same as JZ. If two operands are equal i.e. RAX and RCX then RAX - RCX == 0.

* Lots of different types
 JNE, JE, JG, JGE, JL, JLE, etc

A Quick Intro to Assembly Languages
JMP & JXX

 Mentioned already but jumps are branching statements. i.e. they cause
control flow to be non-linear

 For conditional branches there is a TRUE and a FALSE branch.

* Technically the FALSE branch just “falls through” (executes the next
Instruction

e The TRUE branch is taken if the check evaluates to TRUE

e j.e. JZ evaluates the expression (ZF == 0). If ZF is equal to 0 then (ZF == 0)
—= 1

A Quick Intro to Assembly Languages

JXX example. Branch taken?

mov rax, 0x5

mov rcx, 0x10
cmp rax, rcx

jne ~end

end

A Quick Intro to Assembly Languages

JXX example. Branch taken?

mov rax, 0x5
mov rcx, 0x10
cmp rax, rcx
je ~end

end

A Quick Intro to Assembly Languages

JXX example. Branch taken?

mov rax, 0x5
mov rcx, 0x10
cmp rax, rcx
j1 ~end

end

A Quick Intro to Assembly Languages
CALL & RET

* What about functions?
» Just like in C programming we want to organise code so that it can be reused
* How to we get there and back again though??
 CALL 0x1234 (Typically a 5 byte instruction on x86_64)
o Effectively:
« PUSHRIP + 5
 JMP 0x1234

A Quick Intro to Assembly Languages
CALL & RET

* Functions often take arguments
» X86 used the stack but x86_64 uses registers (mostly)

» Different calling conventions use different registers but for now we will focus
on System V AMD64 ABI (used by the Linux-based Operating Systems)

 RDI, RSI, RDX, RCX, R8, R10 (more than 6 uses the stack)

o See: https://en.wikipedia.org/wiki/X86 calling conventions

e The return value Is stored in RAX

See suggested reading list,

Item [2] re ABIs

https://en.wikipedia.org/wiki/X86_calling_conventions

A Quick Intro to Assembly Languages
CALL & RET

« How do we get back
 RET (Return)
o Effectively:

« POP RIP

A Quick Intro to Assembly Languages
CALL / RET Example

RSP OXFFFO—

e RIP :=0x1234
e RSP := 0OxFFFO

A Quick Intro to Assembly Languages
CALL / RET Example

0x1239

RSP OXFFD8 —

e CALL 0x4320
e RSP := 0xFFD8
e RIP :=0x4320

A Quick Intro to Assembly Languages
CALL / RET Example

RSP OXFFFO — 0x1239

e RET
e RSP := 0OxFFFO
e RIP :=0x1239

A Quick Intro to Assembly Languages

Final

* This was a firehose of information

* Thisisn’t an assembly programming course

* There are a lot of instructions that you will have to look up on your own
 The INTEL instruction manual is your friend: 2A-2D

e https://www.intel.com/content/www/us/en/developer/articles/technical/
Intel-sdm.html

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Reversing a Simple Function

e | et's work out a few examples.

* First we'll see the assembly, and then we'll work backward to C.

Do this homework!

Reversing a Simple Function

An Example

imul rdi. rdi
mov rax. rdi
ret

Reversing a Simple Function

An Example

imul rdi. rdi
mov rax. rdi
ret

* Register rdi is the first parameter
* "imul rdi, rdi" MULtiplies RDI by itself and stores the result in RDI.
* "mov rax, rdi" MOVes the value of RDI into rax.

e "ret" Is the standard return function on x86 64.

Reversing a Simple Function

An Example

imul rdi. rdi
mov rax. rdi
ret

v

int square 1int num
return num * num

Reversing a Simple Function

Another Example

mov rax, rdi

cmp rax, rsi
jle 0x000b
mov rax, rsi

ret

Reversing a Simple Function

Another Example

mov rax, rdi
cmp rax, rsi
jle 0x000b
mov rax, rsil
ret

* Register rdi is the first parameter, rsi is the second

* “moy, rax, rdi” sets rax equal to rdi. This is an optimisation to save a branch.
* "cmp rax, rsi” Compares rax (which was rdi) to rsi

* “jle” Jumps if rax is less than or equal to rsi

* “moy, rax, rsi” sets rax equal to rsi.

e "ret" Is the standard return function on x86 64.

Reversing a Simple Function

Another Example

mov rax, rdi
cmp rax, rsi
jle 0x000b
mov rax, rsil
ret

\ 4

int min int a, int b
1f a <= b
return a
else
return b

Useful Tools for This Course

 GNU Objdump -- Command-line disassembler for many architectures.

» ghidra-sre.org -- GHIDRA, the NSA's reverse engineering tool.

e radare.org -- A free, command-line reverse engineering toolkit.

» godbolt.org -- Compiler Explorer, a tool to view assembly from snippets of C.

« GDB, LLDB -- Debuggers are very handy for exploring samples.

 Pen and Paper! -- Reverse engineering Is puzzle solving.

http://ghidra-sre.org
http://radare.org
http://godbolt.org

Disassembling a Binary with Objdump

del 1%

first:

Disassembly of section

P000000000001000 < 1nit>:
1000:
1004 :
100b:
100e:
1010:
1012:
1016:

file format elf64-x86-64

48
48
48
74
ff
48
c3

83

8b 05 dd 2f 00 00

85
02
do
83

objdump —-d first

ec @8

c@

c4 08

.1nit:

sub
mov
test
je
call
add
ret

$0x8,%rsp

0x2fdd(%rip),%rax
oraX % rax

1012 < 1n1t+0x12>
*%rax

$0x8,

%Irsp

3fe8 <

gmon_start__@Base>

Disassembling with GDB

dell% gdb first

Reading symbols from first...

(No debugging symbols found in first)
(gdb) disassemble _init
Dump of assembler code for function _1init:

0x0000000000001000
0x0000000000001004
0x000000000000100Db
0x000000000000100e
0x0000000000001010
0x0000000000001012
0x0000000000001016

End of assembler dump.

(gdb)

<+0>:sub $0x8,%rsp

<+4>:mov Ox2fdd(%rip),%rax
<+11>:test srax,%srax
<+14>:je 0x1012 < +18>
<+16>:call *%rax

<+18>:add $0x8,%rsp
<+22>:ret

0x3fe8

Disassembling with Radare2

dell%s r2 first

pd 7 @0x1000

0x00001000
0x00001004
0x0000100b
0x0000100e
0x00001010
0x00001012
0x00001016

ff

00

’

) [

je 0x1012
call rax

’

ret

] o

’

[0x3Te8:8]=0

Decompiling with GHIDRA

ﬂ b 4 CodeBrowser: re-course:/week01/first VoA @
File Edit Analysis Graph Navigation Search Select Tools Window Help
H & - =»- BPRER JIDULFREYB: %9 vao | vREYeG.2080 138 @
[ProgramTrees FPERES O Ry @ E- x| [Efbecompile: it - sty G | L] @ v X
fini A J/ ram:00L0L000-ram: OULOLOLE ﬁ 1
text r // r g fint _init(EVP_PKEY_CTX *ctx)
'plt'gOt PSS ST ST ST ST EFT ST ESFSFTSTSTSTSTSTTTSTSTSTFTSFSFT TS EEEEEE S E S
It 4 {
i P ¥ FUNCTION * s| int ivarl:
_Inlt E A S 6 !
rela.plt ™ | int __stdcall _init(EVP_PKEY_CTX * ctx) 7| ivarl = _gmon_start_ ();
rela.dyn int EAX: 4 <RETURN> 8| return 1Varl;
‘gnu_version r EVP_PKEY_CTX * RDI:8 ctx g }
.gnu.version __DT_INIT XREF[5] : Entry Point(¥), 001000f8(*), 10
» _init __libc_csu_1init:00101188(c),
.dynstr .
dynsym 00103e10(*),
g NSy elfSectionHeaders: :000002d0(*)
-gnu.hash 00101000 48 83 ec 08 SUB RSP, 0x8)
.note.ABl-tag 00101004 48 8b 05 MOV RAX=>__gmon_start__,qword ptr [->__gmon_start__]
=] .note.gnu.build-id dd 2f 00 00
v
A intors - ﬂ 0010100b 48 85 cO TEST RAX, RAX
[-m - 0010100e 74 02 iz LAB 00101012
| 00101010 ff do CALL RAX=>_ gmon_start _
x |
_ ‘ EII Ly LAB_00101012 XREF[1]: 0010100e(7)
» ¥ _ do_global dtors_aux A 00101012 48 83 c4 08 ADD RSP, 0x8
» ¥ _gmon_start__ L 00101016 c3 RET
» § _libc esufini INE L e
» ¥ _ libc_csu_init x olt
> § _fini // SHT_PROGBITS [0x1020 - Ox103f]
// ram:00101020-ram:0010103f
//
¥ _TM_deregisterTMCloneTable .
> ‘? _ITM_reg|sterTMCIoneTabIe » : L :-:I:I:::\:lf L : —\L -
» § start v < - Y| « U >
Filter: ‘ { Q B console - Scripting] 5 69" X
mpeMan...ﬁ' - |- ’I\Ik = - X
v % Data Types
» # BuiltinTypes
» |E Ofirst
» i generic_clib
» i generic_clib_64
Fiter:)| =/ console x [Bookmarks x |
@ 0010100b _init TEST RAX,RAX

Day 1 Homework

 From disassembly to pseudocode:
» Take the listing you are given and write the C-like pseudocode
 What will the function return given a specific value?

* For next class, have Ghidra installed and make sure that you can ssh into the
Babylon servers from your laptop

» https://kb.thayer.dartmouth.edu/article/361-linux-services

* For login with Kerberos tokens rather than endlessly retyping your password:
https://hackmd.io/e5Ft3DXCRze6NGnOudCt4Q

* Also, enable GSSAPI in your .ssh/config for passwordless SCP to work:
https://services.dartmouth.edu/TDClient/1806/Portal/KB/ArticleDet?1D=89203

https://kb.thayer.dartmouth.edu/article/361-linux-services
https://hackmd.io/e5Ft3DXCRze6NGnOudCt4Q

