
 Dartmouth College -- Winter 2022

Reverse Engineering
Week 1: Introduction to Disassembly, Layout and a Little Linking

Instructor: Sergey Bratus

Contributions and guest lectures: John Berry, Travis Goodspeed, Ryan Speers, more TBA

Source: https://xkcd.com/138/

What is Reverse Engineering?
Goals of the course

• Rapid immersion: real systems, real tools, real specs, lots of surprising complications

• You’ll need to explore, search (a lot), and prioritize, not just follow the examples

• RE requires some creativity and intuition that is only developed through practice, not just
listening to lectures

• You won’t be taught everything you need to know in lectures. To be good at RE you have
to learn to find answers on your own. Google is your friend.

• By the end of the course you should be able to take a blob of code and figure out what it
does. (within reason)

• You will be exposed to malicious software (malware) so you will gain an understanding of
what you have seen in the news about ransomware, etc

What is Reverse Engineering?
Homework

• There will be homework after every class that is due prior to the next one

• Tuesday homework will be easier and are designed to solidify what you
learned that day

• Thursday homework will be a little more complex

• Many small assignments are better than fewer large ones. Getting better at
RE is like learning a language. A little every day is better than a lot crammed
just before it is due.

What is Reverse Engineering?
Mid-term & Final

• The course is project-based & all exams will be take-home

• Subject to the Dartmouth Honor Code

• You will be given some software that you will RE and write up what it does

• Probably some other small tasks

• If you want to go above and beyond the coursework, individual research
projects and Senior Honors Theses will be encouraged

• Improving state-of-the-art RE tools such as Ghidra and Binary Ninja is
strongly encouraged

What is Reverse Engineering?
And why do we do it?

• Engineers work from a Design to an Artifact

• Reverse Engineers work backward, from an Artifact back to a Design

• In computing, this is often working from an Executable back to Source Code

• This is useful for many reasons:

• We can preserve and sustain old software by emulating it

• We can find security bugs without source code

• We can copy software, or determine whether one program copies another

What is Reverse Engineering?
And is it legal?

• This isn’t a course in law, nor are any of us law experts. Seek your own legal advice.

• There are many legal uses for Reverse Engineering, but also there are potential violations of law or contracts.

• The Electronic Frontier Foundation (EFF) has a helpful guide for reference at https://www.eff.org/issues/coders/
reverse-engineering-faq

• “Five areas of United States law are particularly relevant for computer scientists engaging in reverse engineering:

• Copyright law and fair use, codified at 17 U.S.C. 107;

• Trade secret law;

• The anti-circumvention provisions of the Digital Millennium Copyright Act (DMCA), codified at 17 U.S.C. section 1201;

• Contract law, if use of the software is subject to an End User License Agreement (EULA), Terms of Service notice
(TOS), Terms of Use notice (TOU), Non-Disclosure Agreement (NDA), developer agreement or API agreement; and

• The Electronic Communications Privacy Act, codified at 18 U.S.C. 2510 et. seq.” (-EFF)

We didn’t talk about this in class,
but we will.

https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq

What is Reverse Engineering?
And how is it done?

• Source Code is compiled and linked into Machine Code.

• Machine Code looks like this:

• E8 F9 CA AD DE

• Machine Code translates directly to Assembly Code, like this:

• CALL 0xDEADCAFE

• At a low level, we're just reading disassembly and annotating it to be legible

• At a high level, we're also trying to understand the program design

What is Reverse Engineering?
And how is it done?

• You can learn to read Disassembly, but there are complications:

• It is very verbose, much more so than C

• It often lacks variable and function names

• Tools can help!

• Decompiling the Disassembly into C, or something like C

• Accepting new variable and function names

• Transferring symbol names between different programs

What is Reverse Engineering?
And what tools make it easier?

• IDA Pro

• First popular Interactive Disassembler

• First commercially useful Decompiler

• Ghidra

• NSA's internal tool for reverse engineering, now with a declassified & free version

• Binary Ninja

• Commercial disassembler with clean scripting

We will use Ghidra extensively.

Your final project or Honors Thesis
could be a Ghidra plugin or another

Ghidra improvement

IDA Pro

The Basics of Reverse Engineering
What it's like inside a C program.

air% cat pointers.c
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

int main(int argc, char **argv){
 void *heapthing=malloc(512);
 printf("Main is at 0x%08llx.\n", (uint64_t) main);
 printf("The call stack is near 0x%08llx.\n",
 (uint64_t) &argc);
 printf("The heap is near 0x%08llx.\n",
 (uint64_t) heapthing);

}
air% ./pointers
Main is at 0x100003e84.
The call stack is near 0x16fdff76c.
The heap is near 0x100304310.
air%

Run this program several times.
If you see different addresses between runs,

you are seeing the effects of ASLR.

Note which part of each address doesn’t
change: that’s because ASLR is at page

granularity (typically 4Kbytes)

The Basics of Reverse
Engineering
What does Disassembly look like?

Note Intel syntax of this disassembler

The Basics of Reverse Engineering
What does Decompiled C look like?

• Denser than Assembly

• Some reasons it is
difficult to read:

• Missing variables
names.

• Potential inaccuracies:

• Missing arguments.

A Quick Intro to Assembly Languages

• There are many of these languages, and they are different.

• This course focuses on x86 and will dabble in ARM.

• ARM has three major dialects: ARM32, Thumb2, and ARM64

• x86 has two major dialects: x86 and x86_64/amd64.

• You will be writing a little assembly, but reading a lot of it.

Hexadecimal
A Quick Intro to Assembly Languages

A Quick Intro to Assembly Languages
Registers

• Registers are like small variables that exist in hardware

• On x86_64 there are a lot of them but here are the most common

• RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, R8-R15, and RIP

• These are all 64 bits in length.

• RIP (Instruction Pointer) is a special register that points to the next instruction to be executed. It is also
commonly referred to as the Program Counter (PC)

• Floating point registers (3.14169)

• Flag Register (Zero, Signed, Carry, etc)

• Segment Registers (for memory stuff)

• AVX/SSE - xmm/ymm/zmm - 128/256/512 bits

See suggested reading list,
Item [1]

A Quick Intro to Assembly Languages
Registers

• You can access subsets of the bits for many of them:

• RAX (all 64 bits) -> EAX (lower 32 bits) -> AX (lower 16 bits) -> AH (upper 8
bits of AX) -> AL (lower 8 bits of AX)

A Quick Intro to Assembly Languages
ADD RAX, RCX

• Each line is one Instruction.

• Each line begins with an Operation. In English grammar, a Verb.

• Parameters are typically called operands

• 48 01 c8 is the machine code. ADD is often called the instruction mnemonic

• The first parameter is the Destination, storing the result.

• Instructions are grouped into Functions.

• A function begins with the parameters on the Stack or in Registers.

• A function ends with a standard instruction. (RET or BX LR.)

A Quick Intro to Assembly Languages
ADD RAX, RCX

• This instruction is x86_64:

• This specific syntax view of the instruction is called (Intel). There are other
ways to represent it, such as Gas/AT&T syntax used by GNU tools (GCC)

• Destination register comes first (with AT&T, it’s the opposite! Why, oh why?)

• The second register is one of the inputs.

• The operation is ADDition.

• So what does this do?

A Quick Intro to Assembly Languages
Common Operations

• Operations are unique to each assembly language, but some are common.

• MOV, ADD, SUB, MUL -- Arithmetic

• CALL, BL -- Function Calls

• RET, BLR -- Function Returns

• PUSH, POP -- Grow or shrink the Stack.

• A table can be handy for each new assembly language.

• Learn the common instructions, look up the rest.

A Quick Intro to Assembly Languages
Stack

• You are probably familiar with the stack data type: Last in First Out (LIFO)

• As opposed to Queue: First in First out (FIFO)

• The stack “grows down” from higher addresses to lower addresses

• Used to store local variables that were “statically allocated” at compile time

• We say statically allocated because the size doesn’t change when the
program runs

• On x86_64 the stack is pointed to by RSP. It is an implicit operand in many
instructions.

A Quick Intro to Assembly Languages
PUSH

• Used to store data on the stack

• PUSH RAX

• Effectively

• SUB RSP, 8

• MOV [RSP], RAX

• (* Note that “[]” denotes a dereference. Like var[8] = ## in C *)

A Quick Intro to Assembly Languages
POP

• Used to take data from the stack and store it

• POP RAX

• Effectively

• MOV RAX, [RSP]

• ADD RSP, 8

A Quick Intro to Assembly Languages
PUSH/POP - Example

• RSP := 0xFFF0

• RAX := 0xdeadbeef

• RCX := 0xd00dd00d

A Quick Intro to Assembly Languages
PUSH/POP - Example

• PUSH RAX

A Quick Intro to Assembly Languages
PUSH/POP - Example

• PUSH RCX

A Quick Intro to Assembly Languages
PUSH/POP - Example

• POP RAX

A Quick Intro to Assembly Languages
PUSH/POP - Example

• POP RCX

A Quick Intro to Assembly Languages
PUSH/POP - Example

• RSP := 0x???

• RAX := 0x???

• RCX := 0x???

A Quick Intro to Assembly Languages
PUSH/POP - Example

• RSP := 0xFFF0

• RAX := 0xd00dd00d

• RCX := 0xdeadbeef

A Quick Intro to Assembly Languages
Control Flow

#include <stdio.h>

int main(int argc, char **argv){
 if(argc>5)
 printf("That's too many!\n");
 else
 printf("That's alright.\n");
}

• A little C becomes a lot of Assembly.

• Sometimes it helps to think in a Graph.

A Quick Intro to Assembly Languages
Think of Control
Flow as a Graph

A Quick Intro to Assembly Languages
CMP RAX, RCX

• You can think of CMP as a signed subtraction

• Signed uses the most significant bit (MSB) to indicate the sign. 1 == negative; 0 == positive

• Uses twos complement

• 8-bit char: 0xFF = -1; 0x01 = 1

• Effectively

• temp = RAX - RCX

• The value of temp is used to set the fields of the flag register. For example

• If temp == 0 then ZF = 1 (TRUE) else ZF = 0 (FALSE)

• If temp < 0 then SF = 1 else SF = 0

• There are other flags that may or may not be set depending on the instruction

A Quick Intro to Assembly Languages
JMP & JXX

• JMP is an unconditional branching statement. It jumps where you tell it without checking any of the
condition flags.

• JXX - This is a family of instructions that jump if something is true. For example,

• JZ 0x1234 will jump to 0x1234 if the Zero Flag is set to 1. This would happen if the operands of the
last comparison were equal.

• JNZ 0x1234 is the opposite, it will jump if not zero (ZF is set to 0)

• Different jump instructions check different flags but there are some that are equivalent.

• JE is the same as JZ. If two operands are equal i.e. RAX and RCX then RAX - RCX == 0.

• Lots of different types

• JNE, JE, JG, JGE, JL, JLE, etc

A Quick Intro to Assembly Languages
JMP & JXX

• Mentioned already but jumps are branching statements. i.e. they cause
control flow to be non-linear

• For conditional branches there is a TRUE and a FALSE branch.

• Technically the FALSE branch just “falls through” (executes the next
instruction

• The TRUE branch is taken if the check evaluates to TRUE

• i.e. JZ evaluates the expression (ZF == 0). If ZF is equal to 0 then (ZF == 0)
== 1

A Quick Intro to Assembly Languages
JXX example. Branch taken?

 mov rax, 0x5
 mov rcx, 0x10
 cmp rax, rcx
 jne _end

_end

A Quick Intro to Assembly Languages
JXX example. Branch taken?

 mov rax, 0x5
 mov rcx, 0x10
 cmp rax, rcx
 je _end

_end

A Quick Intro to Assembly Languages
JXX example. Branch taken?

 mov rax, 0x5
 mov rcx, 0x10
 cmp rax, rcx
 jl _end

_end

A Quick Intro to Assembly Languages
CALL & RET

• What about functions?

• Just like in C programming we want to organise code so that it can be reused

• How to we get there and back again though?

• CALL 0x1234 (Typically a 5 byte instruction on x86_64)

• Effectively:

• PUSH RIP + 5

• JMP 0x1234

A Quick Intro to Assembly Languages
CALL & RET

• Functions often take arguments

• x86 used the stack but x86_64 uses registers (mostly)

• Different calling conventions use different registers but for now we will focus
on System V AMD64 ABI (used by the Linux-based Operating Systems)

• RDI, RSI, RDX, RCX, R8, R10 (more than 6 uses the stack)

• See: https://en.wikipedia.org/wiki/X86_calling_conventions

• The return value is stored in RAX
See suggested reading list,

Item [2] re ABIs

https://en.wikipedia.org/wiki/X86_calling_conventions

A Quick Intro to Assembly Languages
CALL & RET

• How do we get back

• RET (Return)

• Effectively:

• POP RIP

A Quick Intro to Assembly Languages
CALL / RET Example

• RIP := 0x1234

• RSP := 0xFFF0

A Quick Intro to Assembly Languages
CALL / RET Example

• CALL 0x4320

• RSP := 0xFFD8

• RIP := 0x4320

A Quick Intro to Assembly Languages
CALL / RET Example

• RET

• RSP := 0xFFF0

• RIP := 0x1239

A Quick Intro to Assembly Languages
Final

• This was a firehose of information

• This isn’t an assembly programming course

• There are a lot of instructions that you will have to look up on your own

• The INTEL instruction manual is your friend: 2A-2D

• https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Reversing a Simple Function

• Let's work out a few examples.

• First we'll see the assembly, and then we'll work backward to C.

Do this homework!

Reversing a Simple Function
An Example

 imul rdi, rdi
 mov rax, rdi
 ret

Reversing a Simple Function
An Example

• Register rdi is the first parameter

• "imul rdi, rdi" MULtiplies RDI by itself and stores the result in RDI.

• "mov rax, rdi" MOVes the value of RDI into rax.

• "ret" is the standard return function on x86_64.

 imul rdi, rdi
 mov rax, rdi
 ret

Reversing a Simple Function
An Example

int square(int num) {
 return num * num;
}

 imul rdi, rdi
 mov rax, rdi
 ret

Reversing a Simple Function
Another Example

0x0000 mov rax, rdi
0x0003 cmp rax, rsi
0x0006 jle 0x000b
0x0008 mov rax, rsi
0x000b ret

Reversing a Simple Function
Another Example

• Register rdi is the first parameter, rsi is the second

• “mov, rax, rdi” sets rax equal to rdi. This is an optimisation to save a branch.

• "cmp rax, rsi” Compares rax (which was rdi) to rsi

• “jle” Jumps if rax is less than or equal to rsi

• “mov, rax, rsi” sets rax equal to rsi.

• "ret" is the standard return function on x86_64.

0x0000 mov rax, rdi
0x0003 cmp rax, rsi
0x0006 jle 0x000b
0x0008 mov rax, rsi
0x000b ret

Reversing a Simple Function
Another Example

int min(int a, int b) {
 if (a <= b) {
 return a;
 } else {
 return b;
 }
}

0x0000 mov rax, rdi
0x0003 cmp rax, rsi
0x0006 jle 0x000b
0x0008 mov rax, rsi
0x000b ret

Useful Tools for This Course

• GNU Objdump -- Command-line disassembler for many architectures.

• ghidra-sre.org -- GHIDRA, the NSA's reverse engineering tool.

• radare.org -- A free, command-line reverse engineering toolkit.

• godbolt.org -- Compiler Explorer, a tool to view assembly from snippets of C.

• GDB, LLDB -- Debuggers are very handy for exploring samples.

• Pen and Paper! -- Reverse engineering is puzzle solving.

http://ghidra-sre.org
http://radare.org
http://godbolt.org

Disassembling a Binary with Objdump

dell% objdump -d first

first: file format elf64-x86-64

Disassembly of section .init:

0000000000001000 <_init>:
 1000: 48 83 ec 08 sub $0x8,%rsp
 1004: 48 8b 05 dd 2f 00 00 mov 0x2fdd(%rip),%rax # 3fe8 <__gmon_start__@Base>
 100b: 48 85 c0 test %rax,%rax
 100e: 74 02 je 1012 <_init+0x12>
 1010: ff d0 call *%rax
 1012: 48 83 c4 08 add $0x8,%rsp
 1016: c3 ret

Disassembling with GDB

dell% gdb first
Reading symbols from first...
(No debugging symbols found in first)
(gdb) disassemble _init
Dump of assembler code for function _init:
 0x0000000000001000 <+0>: sub $0x8,%rsp
 0x0000000000001004 <+4>: mov 0x2fdd(%rip),%rax # 0x3fe8
 0x000000000000100b <+11>: test %rax,%rax
 0x000000000000100e <+14>: je 0x1012 <_init+18>
 0x0000000000001010 <+16>: call *%rax
 0x0000000000001012 <+18>: add $0x8,%rsp
 0x0000000000001016 <+22>: ret
End of assembler dump.
(gdb)

Disassembling with Radare2

dell% r2 first
[0x00001050]> pd 7 @0x1000
 ;-- section..init:
 ;-- segment.LOAD1:
 ;-- _init:
 0x00001000 4883ec08 sub rsp, 8
 0x00001004 488b05dd2f00. mov rax, qword [reloc.__gmon_start] ; [0x3fe8:8]=0
 0x0000100b 4885c0 test rax, rax
 ┌─< 0x0000100e 7402 je 0x1012
 │ 0x00001010 ffd0 call rax
 └─> 0x00001012 4883c408 add rsp, 8
 0x00001016 c3 ret
[0x00001050]>

Decompiling with GHIDRA

Day 1 Homework
• From disassembly to pseudocode:

• Take the listing you are given and write the C-like pseudocode

• What will the function return given a specific value?

• For next class, have Ghidra installed and make sure that you can ssh into the
Babylon servers from your laptop

• https://kb.thayer.dartmouth.edu/article/361-linux-services

• For login with Kerberos tokens rather than endlessly retyping your password:  
https://hackmd.io/e5Ft3DXCRze6NGnOudCt4Q

• Also, enable GSSAPI in your .ssh/config for passwordless SCP to work: 
https://services.dartmouth.edu/TDClient/1806/Portal/KB/ArticleDet?ID=89203

https://kb.thayer.dartmouth.edu/article/361-linux-services
https://hackmd.io/e5Ft3DXCRze6NGnOudCt4Q

