
Reverse Engineering
Week 1: Introduction to Disassembly, Layout and a Little Linking

 Dartmouth College -- Winter 2022

Instructor: Sergey Bratus

Contributions and guest lectures: John Berry, Travis Goodspeed, Ryan Speers, more TBA

Motivation

• “Stuxnet”, 2005?–2010

• A group infiltrated engineer workstations  
for Iranian nuclear centrifuges, uploaded modified code to PLC units

• Caused centrifuges to spin out of control and damaged them

• Awesome example of a physical effect from a digital attack

• Felix ‘FX’ Lindner built RE tools for the PLC Step7 code, from scratch

• “27c3: Building Custom Disassemblers”  
https://www.youtube.com/watch?v=Q9ezff6LIoI

Motivation
Cool RE

• Vendors don’t like to give you control over your own devices

• The same is true even for tractors

• There is a group dedicated to tractor hacking that Reverse Engineers the
tractor firmware so that it can be fixed by the farmers

• https://www.wired.com/story/john-deere-farmers-right-to-repair/

https://www.wired.com/story/john-deere-farmers-right-to-repair/

What is Reverse Engineering?
And is it legal?

• This isn’t a course in law, nor are any of us law experts. Seek your own legal advice.

• There are many legal uses for Reverse Engineering, but also there are potential violations of law or contracts.

• The Electronic Frontier Foundation (EFF) has a helpful guide for reference at https://www.eff.org/issues/coders/
reverse-engineering-faq

• “Five areas of United States law are particularly relevant for computer scientists engaging in reverse engineering:

• Copyright law and fair use, codified at 17 U.S.C. 107;

• Trade secret law;

• The anti-circumvention provisions of the Digital Millennium Copyright Act (DMCA), codified at 17 U.S.C. section 1201;

• Contract law, if use of the software is subject to an End User License Agreement (EULA), Terms of Service notice
(TOS), Terms of Use notice (TOU), Non-Disclosure Agreement (NDA), developer agreement or API agreement; and

• The Electronic Communications Privacy Act, codified at 18 U.S.C. 2510 et. seq.” (-EFF)

https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq

ELF Files
How the OS interprets a binary

• Executable and Linkable Format (ELF)

• Composed of 3 main parts (ELF Header, Sections, Segments)

• We will just hit a few of the important bits

ELF Files
Header

• Provides some basic information about the file

• Where to start executing

• Where to find the program headers

• Where to find the section headers.

• Other information as well such as type, architecture, etc

ELF Files
Header
• To view header details use the readelf -h <file>

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: DYN (Shared object file)

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x1060

 Start of program headers: 64 (bytes into file)

 Start of section headers: 14792 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 13

 Size of section headers: 64 (bytes)

ELF Files
Header (Magic)
• To view header details use the readelf -h <file>

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: DYN (Shared object file)

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x1060

 Start of program headers: 64 (bytes into file)

 Start of section headers: 14792 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 13

 Size of section headers: 64 (bytes)

ELF Files
Header (Entry Point)
• To view header details use the readelf -h <file>

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: DYN (Shared object file)

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x1060

 Start of program headers: 64 (bytes into file)

 Start of section headers: 14792 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 13

 Size of section headers: 64 (bytes)

ELF Files
Header (Program Headers Start)
• To view header details use the readelf -h <file>

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: DYN (Shared object file)

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x1060

 Start of program headers: 64 (bytes into file)

 Start of section headers: 14792 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 13

 Size of section headers: 64 (bytes)

ELF Files
Header (Section Headers Start)
• To view header details use the readelf -h <file>

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: DYN (Shared object file)

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x1060

 Start of program headers: 64 (bytes into file)

 Start of section headers: 14792 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 13

 Size of section headers: 64 (bytes)

ELF Files
Segments (Program Headers)

• Used to describe how to load the executable into memory

• Provides information such as type, permissions, load address, size, etc

• 64-bit ELFs program headers have the following structure:

typedef struct {

 uint32_t p_type;

 uint32_t p_flags;

 Elf64_Off p_offset;

 Elf64_Addr p_vaddr;

 Elf64_Addr p_paddr;

 uint64_t p_filesz;

 uint64_t p_memsz;

 uint64_t p_align;

} Elf64_Phdr;

ELF Files
Segments (Type)

typedef struct {

 uint32_t p_type;

 uint32_t p_flags;

 Elf64_Off p_offset;

 Elf64_Addr p_vaddr;

 Elf64_Addr p_paddr;

 uint64_t p_filesz;

 uint64_t p_memsz;

 uint64_t p_align;

} Elf64_Phdr;

ELF Files
Segments (Flags)

typedef struct {

 uint32_t p_type;

 uint32_t p_flags;

 Elf64_Off p_offset;

 Elf64_Addr p_vaddr;

 Elf64_Addr p_paddr;

 uint64_t p_filesz;

 uint64_t p_memsz;

 uint64_t p_align;

} Elf64_Phdr;

ELF Files
Segments (Offset)

typedef struct {

 uint32_t p_type;

 uint32_t p_flags;

 Elf64_Off p_offset;

 Elf64_Addr p_vaddr;

 Elf64_Addr p_paddr;

 uint64_t p_filesz;

 uint64_t p_memsz;

 uint64_t p_align;

} Elf64_Phdr;

ELF Files
Segments (Virtual Address)

typedef struct {

 uint32_t p_type;

 uint32_t p_flags;

 Elf64_Off p_offset;

 Elf64_Addr p_vaddr;

 Elf64_Addr p_paddr;

 uint64_t p_filesz;

 uint64_t p_memsz;

 uint64_t p_align;

} Elf64_Phdr;

ELF Files
Segments (Program Headers)

• readelf -l <file>

Elf file type is DYN (Shared object file)

Entry point 0x1060

There are 13 program headers, starting at offset 64

Program Headers:

 Type Offset VirtAddr PhysAddr

 FileSiz MemSiz Flags Align

 PHDR 0x0000000000000040 0x0000000000000040 0x0000000000000040

 0x00000000000002d8 0x00000000000002d8 R 0x8

 INTERP 0x0000000000000318 0x0000000000000318 0x0000000000000318

 0x000000000000001c 0x000000000000001c R 0x1

 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

 LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000

 0x0000000000000600 0x0000000000000600 R 0x1000

 LOAD 0x0000000000001000 0x0000000000001000 0x0000000000001000

 0x0000000000000265 0x0000000000000265 R E 0x1000

ELF Files
Sections

• Contains the information needed for linking and relocation

• Common sections: .text; .data; .rodata; .bss

typedef struct {

uint32_t sh_name;

uint32_t sh_type;

uint64_t sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

uint64_t sh_size;

uint32_t sh_link;

uint32_t sh_info;

uint64_t sh_addralign;

uint64_t sh_entsize;

} Elf64_Shdr;

ELF Files
Sections (Section Name)

typedef struct {

uint32_t sh_name;

uint32_t sh_type;

uint64_t sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

uint64_t sh_size;

uint32_t sh_link;

uint32_t sh_info;

uint64_t sh_addralign;

uint64_t sh_entsize;

} Elf64_Shdr;

ELF Files
Sections (Section Header Address)

typedef struct {

uint32_t sh_name;

uint32_t sh_type;

uint64_t sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

uint64_t sh_size;

uint32_t sh_link;

uint32_t sh_info;

uint64_t sh_addralign;

uint64_t sh_entsize;

} Elf64_Shdr;

ELF Files
Sections (Section Header Offset)

typedef struct {

uint32_t sh_name;

uint32_t sh_type;

uint64_t sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

uint64_t sh_size;

uint32_t sh_link;

uint32_t sh_info;

uint64_t sh_addralign;

uint64_t sh_entsize;

} Elf64_Shdr;

ELF Files
Sections (.bss)

• Holds zeroed-out uninitialised data

• Used to hold global variables

• Readable and writeable

ELF Files
Sections (.data)

• Holds initialised data

• Used to hold global variables

• Readable and writeable

ELF Files
Sections (.rodata)

• Holds initialised data

• Used to hold global variables

• Read only

ELF Files
Sections (.text)

• Holds executable code

• Read/Execute only

ELF Files
Sections (.got)

• Global Offset Table

• An array of pointers used when the
executable needs to call an imported
function

ELF Files
Sections (.plt)

• Procedure Linkage Table

• Section of code that uses the GOT to call
imported functions

ELF Files
Segments (Program Headers)

• readelf -S <file>

There are 31 section headers, starting at offset 0x39c8:

Section Headers:

 [Nr] Name Type Address Offset

 Size EntSize Flags Link Info Align

 [0] NULL 0000000000000000 00000000

 0000000000000000 0000000000000000 0 0 0

 [1] .interp PROGBITS 0000000000000318 00000318

 000000000000001c 0000000000000000 A 0 0 1

 [2] .note.gnu.propert NOTE 0000000000000338 00000338

 0000000000000020 0000000000000000 A 0 0 8

 [3] .note.gnu.build-i NOTE 0000000000000358 00000358

 0000000000000024 0000000000000000 A 0 0 4

 [4] .note.ABI-tag NOTE 000000000000037c 0000037c

 0000000000000020 0000000000000000 A 0 0 4

 [5] .gnu.hash GNU_HASH 00000000000003a0 000003a0

 0000000000000024 0000000000000000 A 6 0 8

 [6] .dynsym DYNSYM 00000000000003c8 000003c8

 00000000000000a8 0000000000000018 A 7 1 8

 [7] .dynstr STRTAB 0000000000000470 00000470

 0000000000000084 0000000000000000 A 0 0 1

 [8] .gnu.version VERSYM 00000000000004f4 000004f4

 000000000000000e 0000000000000002 A 6 0 2

 [9] .gnu.version_r VERNEED 0000000000000508 00000508

 0000000000000020 0000000000000000 A 7 1 8

ELF Files
References

• https://blog.k3170makan.com/2018/09/introduction-to-elf-format-elf-
header.html

• https://wiki.osdev.org/ELF_Tutorial

• man elf

https://blog.k3170makan.com/2018/09/introduction-to-elf-format-elf-header.html
https://blog.k3170makan.com/2018/09/introduction-to-elf-format-elf-header.html
https://wiki.osdev.org/ELF_Tutorial

ELF Dynamic Linking
Why?

• If not then every executable has to contain every bit of code that it wants to
execute

• It is better to use a common set of shared libraries.

• Don’t confuse with compile time linking

ELF Dynamic Linking
How?

• Well, its complicated

• The OS uses a “linker” that is specified in the ELF header, see .interp segment

• This linker looks at the ELF headers and determines what libraries need to be loaded
in order for the ELF executable to run

• The address in the GOT are set to the correct location in memory where the libraries
were loaded.

• So when you call printf, your code calls the location in the PLT which then will JMP
to the necessary location in code.

• Way more complicated than this but it is a good overview.

ELF Dynamic Linking
ldd

ldd <file>

linux-vdso.so.1 (0x00007ffd121f6000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007ff7d6e78000)

/lib64/ld-linux-x86-64.so.2 (0x00007ff7d707d000)

Ghidra
What is it?

• Free cross-platform reverse engineering tool written by…the NSA

• Yes, the National Security Agency. Yes, it is free and open source.

• Method to view the assembly instructions of a compiled binary

• Also provides a decompilation view for a C-like syntax

• Makes available a number of analysis tools

• Provides a scripting interface for plugins and an intermediate language (IL)

Ghidra
Launching

• You should have it downloaded and unzipped already

• Windows: Double click ghidraRun.bat

• OSX, *nix: Double click ghidra Run

• If it doesn't launch make sure that it is executable or just run it from a
terminal.

Ghidra
Launching

• When you first open Ghidra
you have to open a project.

• You could just create a single
project for this whole class

Ghidra
Launching

• When you first open Ghidra
you have to open a project.

• You could just create a single
project for this whole class

• File->New Project

Ghidra
Launching

• When you first open Ghidra
you have to open a project.

• You could just create a single
project for this whole class

• File->New Project

• Non-Shared

Ghidra
Launching

• Select a directory and give it
a name

• Click Finish

Ghidra
Launching

• You now have a project but
nothing in it

• Let's load a file: hello_world

• File -> Import File

• Browse to where you have
hello_world saved.

Ghidra
Launching

• Format: Specifies the file
type. The default will likely
be the correct answer.

• Language: The architecture
for which the file is built.

• Destination Folder/Program
Name speak for themselves

Ghidra
Launching

• Import Results: Interesting
information but you can just
click OK.

Ghidra
Launching

• File is imported

• Double click "hello_world"
to launch the Code Browser

Ghidra
Analyzing

Ghidra
Analyzing
• Click Yes to start

the analysis

Ghidra
Analyzing
• Lots of analysis

options but for
now the default
are sufficient.
Click "Analyse"

Ghidra
Analyzing
• Should be quick but

once done you
should be able to see
the ELF header we
discussed earlier.

Ghidra
Analyzing
• Let's check out the

main() function

• In the Symbol Tree

window expand the
Functions folder.

• Scroll until you find
main and click on it.

Ghidra
Analyzing
• Check out the

decompilation

• How does it compare

to what is inside
hello_world.c?

Ghidra
Analyzing

• Gives you an idea of how the
execution flows through the
program.

• You can see the CMP and
subsequent JLE

Ghidra
Analyzing

• Let's start filling out what we
know about this function

• How many arguments are
there to main()?

• What are they?

• Let's give them some names.

• What is happening at
instruction 0x00101189?

• Name it.

Ghidra
Analyzing

• Right or two finger click the
name "local_c" -> Edit Label

Ghidra
Analyzing

• Right or two finger click the
name "local_c" -> Edit Label

Ghidra
Analyzing

• You can see that the new
name propagates

• What name should we give
local_18?

Ghidra
Analyzing

• If you said "argv" then you are
correct.

Ghidra
Analyzing

• If you said "argv" then you are
correct.

argv: An aside
What is argv?

• An array of character pointers

• Each pointer points to a NULL
byte delimited string

• The final entry is a NULL
pointer

• On a 64-bit CPU each address
is 8 bytes.

source: http://www.csc.villanova.edu/~mdamian/csc2405/assign/cmdargs.htm

http://www.csc.villanova.edu/~mdamian/csc2405/assign/cmdargs.htm

Ghidra
Analyzing

• Questions to ask:

1. What is the compare

at 0x101190 checking
for?

2. What are the
instructions from
0x101196-0x1011a1
doing?

3. Under what conditions
will each block be
executed?

Ghidra
Analyzing

• Double click on one of the
calls to print_string

1. How many arguments
does the function
take?

2. What register(s) are
used for the
argument(s).

3. What is the CMP at
0x101159 checking
for?

4. What gets printed?

Week 1 Recap

• Remember the INTEL manuals

• RE requires you to develop an intuition for how code works which only
comes from practice.

• We will be teaching with Ghidra but there are other options available i.e.
binary ninja, or IDA

Day 2 Homework

• You will be compiling and looking at the disassembly of 3 C programs

• If your machine isn't x86 you can log into the babylon servers and use those
for compiling

• Make sure that by the next class you can connect to the babylon servers. We
will be using them during class.

